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Abstract—The rapid adoption of Internet-of-Things (IoT)
and digital twins (DTs) technologies within industrial envi-
ronments has highlighted diverse critical issues related to
safety and security. Sensor failure is one of the major threats
compromising DTs operations. In this article, for the first
time, we address the problem of sensor fault detection, iso-
lation, and accommodation (SFDIA) in large-size networked
systems. Current available machine-learning solutions are
either based on shallow networks unable to capture complex
features from input graph data or on deep networks with over-
shooting complexity in the case of large number of sensors.
To overcome these challenges, we propose a new framework
for sensor validation based on a deep recurrent graph con-
volutional architecture which jointly learns a graph structure
and models spatio-temporal interdependencies. More specifi-
cally, the proposed two-block architecture 1) constructs the virtual sensors in the first block to refurbish anomalous (i.e.,
faulty) behavior of unreliable sensors and to accommodate the isolated faulty sensors and 2) performs the detection
and isolation tasks in the second block by means of a classifier. Extensive analysis on two publicly available datasets
demonstrates the superiority of the proposed architecture over existing state-of-the-art solutions.

Index Terms— Digital twin (DT), fault diagnosis, graph learning, Internet of Things (IoT), machine learning, neural
networks, sensor validation.

I. INTRODUCTION

UNDER the umbrella of Industry 4.0, digital twins (DTs)
have garnered striking interest over the last few years

through the process of industry digital transformation [1].
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Fundamentally, a DT can be defined as a digital profile that
mirrors a physical object or process, i.e., the physical twin
(PT), and provides a bidirectional interaction between the
physical and digital parts. Leveraging DTs, operators can sim-
ulate complex systems behavior, test/predict asset changes in
specific scenarios, and remotely control/monitor/steer systems.

The explosion of the Internet of Things (IoT) and industrial
IoT (IIoT) largely contributed to the success of DTs by
enabling near real-time communications between DT/PT. Hun-
dreds/thousands of sensors distributed all over the PT concert-
edly gather readings throughout a broad array of dimensions
(i.e., features) and send them to the DT in order to run possible
simulations, what-if analysis, study-specific scenarios and/or
generate possible feed-backs/improvements on the PT. How-
ever, faulty data may lead to system instability and eventually
jeopardize system reliability with possible noxious outcomes
ranging from loss or critical damage to the asset (viz. financial
and time loss) and/or environmental hazardous impact to
serious injury to people or death in the worst case. Failure
sources can be classified into three types [2], [3], [4], [5].
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1) Hardware/Software Failure—the sensor itself is inaccu-
rate or faulty due to its bad quality, being out of life
time, bad calibration, and/or software failure;

2) Typical Harsh Environment/Condition—the system
operates under a setting in which sensor survival is
difficult and its performance deteriorates rapidly;

3) Malicious Cyber-Attack—an attempt is perpetrated to
abuse or take advantage of the system functionality.

To ensure the successful rollout of a DT, it is crucial to
continuously monitor and regulate received sensory data
before feeding the DT with them. In particular, sensor fault
diagnosis systems, i.e., systems aiming at three tasks of sensor
fault detection, isolation, and accommodation (SFDIA) [6],
have been wielded to preserve the reliability and robustness of
sensor-based systems. Utilizing multiple physical redundan-
cies (i.e., three or more identical sensors) for each measuring
parameter together with a voting scheme, is a straightforward
approach for fault diagnosis [7], [8], but quite expensive.
Alternatively, analytical redundancy takes advantage of the
existing relationships between sensors and have been explored
with increasing interest [9], [10], [11], [12].

Relying on available historical data, machine learning and
deep learning have been largely adopted for a wide selection
of fault diagnosis tasks [12], [13], [14].

Among machine learning approaches, support-vector
machines (SVMs) were used to detect faulty sensors in
wireless sensor networks (WNSs) but showed limitations
with large/complex datasets [13], [15], principal component
analysis was employed for IoT sensory systems [16], [17],
and dynamic Bayesian networks were tested on intelligent
transport systems, suffering on high-dimensional data [14].

Among deep learning approaches, recently different solu-
tions have been explored for fault diagnosis in IoT systems,
based on multilayer perceptron (MLP) neural networks
(NNs) [9], [18], Recurrent NNs (RNNs) [19], [20], convo-
lutional NNs (CNNs) [21], [22], and autoencoders (AE) [23].
More specifically, a modular-SFDIA (M-SFDIA) architecture
based on MLP NNs was proposed in [9] and [24] within
the framework of DTs. This architecture presented a layered
SFDIA scheme built on a series of MLP estimators pro-
viding residual signals along with trustworthy substitutions
(i.e., estimations) for faulty data, and a classifier performing
detection and identification tasks upon the residual signals. The
M-SFDIA architecture was designed to detect, identify, and
accommodate only a single faulty sensor at once. An extended
version of the M-SFDIA architecture employed a manifold
decision logic as well as a controller unit in order to detect,
isolate, and accommodate simultaneous faulty sensors and
avoid propagation of faults into the architecture [12].

AEs are a type of NNs composed of an encoder and a
decoder that can be used to learn compressed representations
from input data into a latent-space representation [25], [26].
They are also suitable for fault diagnosis and an AE-based
anomaly (viz. fault) detection and accommodation technique
was developed for IIoT systems and described in [23].

Although data-driven approaches have received large atten-
tion in the recent years since they do not require an explicit
formulation of the relationships between sensors (as opposed

to model-based approaches, e.g., [27], [28]), they suffer several
disadvantages: 1) the performance of basic machine learning
methods heavily depends on the nonlinearity, dimensionality,
and heterogeneity of the system; 2) shallow NNs suffer
weak generalization, i.e., they are unable to properly capture
complex features within the data; and 3) the computational
complexity increases exponentially with the system network
size and usually this is paired with a performance degradation.

DTs are expected to become in the near future more
and more accurate counterparts of manifold physical assets,
a pervasive monitoring in the physical space (i.e., via a mas-
sive number of sensors) becomes a mandatory requirement.
However, such massive flow of sensor data can be only
considered safe if an appropriate SFDIA is able to keep
track of them and provide the digital space with reliable
measurements anytime.

Accordingly, in this article, we propose a data-driven-based
deep recurrent graph convolutional architecture for SFDIA
of large-scale IoT networks. Recently, graph NNs (GNN)
have gained significant attention as a promising graph-based
paradigm to perform fault detection. GNNs are capable to
exploit effectively both temporal and spatial correlations
among neighboring nodes (sensors) in large-size IoT systems,
thus providing excellent accuracy in fault diagnosis. Graph
convolutional networks (GCNs) are feed-forward NNs with
convolution operation generalized to graphs of arbitrary
structure [29]. GCNs have been used successfully for drug
synthesis, action recognition, image classification, link predic-
tion, load prediction, and fault diagnosis [30], [31], [32], [33].

Although GNNs has been recently considered for anomaly
detection [34], they are mostly unexplored within the SFDIA
framework. Some recent works have explored GNN classifiers
for fault detection and classification of power transform-
ers [32], graph deviation networks (GDNs) for sensor anomaly
detection [35], and adaptive graph convolutional recurrent
network (AGCRN) for traffic forecasting [36].

In this work, we exploit the AGCRN in a denoising con-
figuration (i.e., reconstruction of data from falsified input) as
the building block for developing reliable virtual sensors. This
configuration also assists the NN to better explore existing
interdependencies among neighboring sensors. Subsequently,
the residuals (i.e., the difference between the readings from
the real sensors and the virtual sensors) are concatenated and
processed by a classifier in order to detect and identify the
presence of faulty sensor(s). Furthermore, the virtual readings
are employed to accommodate the isolated (viz. identified)
faulty sensor(s). Accordingly, the main contributions of this
work are summarized as follows.

1) We propose the use of an enhanced GCN, termed
AGCRN, to model virtual sensors. The AGCRN captures
close-grained spatio-temporal correlations in graph data
based on the two modules and a recurrent design.

2) To the best of our knowledge, this article is the first
to propose the use of GCN-based design in the SFDIA
framework. Our proposed deep recurrent graph convo-
lutional architecture has capabilities for the detection,
isolation, and accommodation of unknown fault types
without any premodifications.
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3) This work is also the first attempt to address and suc-
cessfully perform all three tasks of detection, isolation,
and accommodation of sensor faults within the SFDIA
framework within the challenging scenario of large-scale
IoT networks.

4) The performance of the proposed approach in terms
of mean absolute error (MAE), root mean square error
(RMSE), mean absolute percentage error (MAPE) and
probabilities of detection, false alarm, and correct iden-
tification is evaluated on two publicly available datasets
[37], [38]. Datasets are falsified with synthetically gen-
erated faults (bias and drifts) and compared with alter-
native state-of-the-art techniques [9], [23], [35], [39].
Synthetically generated bias and drift faults have been
considered as they represent hard (i.e., sudden) faults
and soft (i.e., gradually appearing) faults, respectively.
The datasets and NNs in the proposed architecture
are publicly available, which helps reproducibility and
further advances on the topic.

The remainder of this article is structured as follows.
In Section II, preliminaries on graph convolution and GCNs
are presented. Section III describes in detail the proposed
SFDIA architecture, while Section IV provides the description
of the datasets and the framework for fault generation. The
performance comparison of the proposed scheme with other
methods via numerical results is illustrated in Section V,
followed by concluding remarks and possible future work in
Section VI.

Notation: I N denotes the identity matrix of size N ; 1a×b
denotes the matrix of all ones of size [a × b]; 0N denotes the
null vector of length N ; {·}

T refers to the transpose operator,
[·; ·] refers to concate operation, | · | indicates the absolute
operation, ⊙ denotes the entry-wise (Hadamard) product, ⊗

denotes the tensor product (whose meaning is specified each
time is adopted), ∗ denotes the convolution operator, ∥ · ∥p
denotes the p-norm, ∈ is the set membership, and O(·) denotes
the Landau notation. U(a, b) (resp. Ud(a, b)) denotes a uni-
form (resp. discrete-uniform) probability density function (pdf)
with support [a, b] (resp. {a, a + 1, . . . , b}); N (b, c) (resp.
N (µ, 6)) denotes a Gaussian (resp. multivariate Gaussian) pdf
with mean b and variance c (resp. with mean vector µ and
covariance matrix 6); B(p) denotes a Bernoulli distribution
with parameter p.

II. PRELIMINARY

This section introduces the necessary background on
graph signal processing for the proposed SFDIA approach.
Specifically, first in Section II-A, the notion of graph
convolution is recalled. Then, in Section II-B, the actual
implementation of graph convolutional layers is refreshed.

A. Convolution Operation on Graphs
The topological structure of a set of networked sensors can

be described as an undirected graph G(V, E, A), where V is a
finite set of N nodes (i.e., sensors), E is a set of edges that
represents the connections between nodes, and A ∈ RN×N is
the adjacency matrix describing the connectivity of graph G.

The graph Laplacian L ∈ RN×N is a key operator in
graph analysis [40], defined as L ≜ (D − A), namely the
difference between the adjacency matrix A and the diagonal
degree matrix D (where di i =

∑
j ai j ). The normalized

graph Laplacian matrix LG = (I N − D−(1/2) AD−(1/2)) is
a real symmetric positive semidefinite matrix with a com-
plete set of orthonormal eigenvectors {ui }

N
i=1 ∈ RN (also

known as Fourier functions) associated with real nonnegative
eigenvalues {λi }

N
i=1 representing the frequencies of the graph.

Moreover, the graph normalized Laplacian spectrum [41] is
contained in the span of {λi }

N
i=1 ∈ [0, 2]. The graph nor-

malized Laplacian is always diagonalizable by the Fourier
basis U = [u1 · · · uN ] ∈ RN×N i.e., LG = U3U T , where
3 = diag(λ1, . . . ,λN ) ∈ RN×N . The Fourier graph transform
(GFT) F of a signal x ∈ RN is defined by the Fourier basis
F(x) = U T x and its inverse F−1(x) = UF(x).

Spectral convolution on the graph G is defined [42] as the
signal x filtered by graph filter gθ , i.e.,

gθ ∗ x ≜ F−1 (F (gθ ) ⊙ F (x)) = U
(

U T gθ ⊙ U T x
)

=

[
U ĝθ (3) U T

]
x (1)

where ĝθ (3) ≜ diag(U T gθ ) is the spectral graph filter (in
diagonal matrix form) parameterized by θ ∈ RN in the Fourier
domain to avoid the elementwise operation, namely

ĝθ (3) =


ĝθ1(λ1) 0 . . . 0

0 ĝθ2(λ2) . . . 0
...

...
. . .

...

0 0 . . . ĝθN (λN )

 . (2)

B. Graph Convolutional Neural Network
The defined filtering operation gθ ∗ x has a quadratic com-

putational complexity O(N 2) due to the matrix multiplication
with the Fourier basis U in (1). Also, the eigen decomposition
of LG is required (once) for carrying out spectral convolutions
on G. Then, for large graphs (i.e., N ≫ 1), both these
operations can become computationally expensive. Equally
important, there is no guarantee of spatial localization [43] of
the graph filter ĝθ (3) (i.e., a nonsmooth filter). Spatial decay is
an advantageous property to extract multiscale patterns. The
graph filter ĝθ (3) can become a nonsmooth spectral filter,
while smoothness in the frequency domain corresponds to
rapid spatial decay in the vertex domain. To overcome both
these technical difficulties, the spectral convolution of (1)
in GCN layers is obtained by 1) approximating the graph
filter via Chebyshev polynomials and 2) then considering a
first-order approximation to obtain a linear processing relation-
ship. Further details on these approximation steps are reported
in Appendix I.

Capitalizing on the aforementioned result, the GCN layer
for a graph signal X ∈ RN×C with C features per node and
F filters is formulated as

Z = D̃−
1
2 Ã D̃−

1
2 X2 (3)

where 2 ∈ RC×F is the learnable-filter parameter matrix (i.e.,
the GNN weight matrix), the matrix D̃−(1/2) Ã D̃−(1/2) encodes
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Fig. 1. Block diagram of the conceptual SFDIA framework, which consists of two main blocks: estimation and classification.

the graph structure via a functional which relates to the
normalized graph Laplacian, and Z ∈ RN×F is the convolved
signal matrix. Accordingly, the computational complexity of
the GCN operation is O(FC |E |) due to a sparse multiplication
(with D̃−(1/2) Ã D̃−(1/2)). Hence, in general, the GCN layer can
be expressed in its implicit form as

Z = GCN2(X;G). (4)

The aforementioned layer assumes the knowledge of the graph
structure via the matrix D̃−(1/2) Ã D̃−(1/2).

III. SYSTEM MODEL

A. Problem Definition
We consider a large-size sensor system made of N corre-

lated sensors, i.e., N ≫ 1, each measuring C parameters. The
measured parameters of nth sensor at time k are denoted with
xn[k] ∈ RC , while the matrix X[k] = {x1[k], . . . , xN [k]}

T
∈

RN×C collects the recordings of all the N nodes at same
time instant. While observing the stream of measurements
. . . , X[k − 1], X[k], X[k + 1], . . ., a subset of these sensors
(corresponding to the rows of these matrices) may be subject
to weak and transient faults. The SFDIA problem consists of:
1) detecting fault conditions within the system (i.e., at least
one sensor is subject to a fault); 2) identifying faulty sen-
sors (i.e., which sensors are currently subject to faults); and
3) accommodating faulty measurements, i.e., replacing the
faulty streams with estimated measurements via the concept of
virtual sensors. Employing SFDIA is necessary to make DTs
reliable when operating under faulty conditions.

B. Proposed SFDIA Architecture
As shown in Fig. 1, the proposed SFDIA architecture is

made of two NN-based blocks: 1) the estimation block and
2) the classification block. Finally, the architecture is topped
with 3) a threshold-based decision and accommodation logic.
The input to the estimation block of the proposed architecture
is the set of readings from all the sensors within a slid-
ing window. The estimation block models virtual sensors of
all the sensors within the system. The classification block
provides probabilistic predictions on the faulty condition of
each sensor on the basis of the residual between each sensor
and its corresponding virtual sensor. The decision process

detects faulty conditions and identifies faulty sensors: once the
faulty sensor(s) is (are) identified, the proposed architecture
isolates the faulty sensors (i.e., position in failure status)
and accommodates their measurements with the associated
virtual readings to the DT throughout the process. High-level
specification for each block is provided in what follows.

1) Estimation Block: This block aims to model the sensors
(i.e., design the virtual sensors) within the system and is
composed of a single multidimensional estimator providing the
estimates X̂[k] ∈ RN×C of the present readings (at time k).
The estimator receives as input a series of previous (time-
correlated) sensors readings {X[k − 1], . . . , X[k − Me]} over
a window of size Me (the input of this approach is arranged
in a tensor of size [N , C, Me]), a tunable hyperparameter of
the proposed estimator. It is designed to capitalize the spatial
correlation among sensors via the graph G, i.e.,

X̂[k] = f ς (X[k − 1], . . . , X[k − Me];G(ς)) (5)

where f ς (·) : RN×C×Me → RN×C denotes the function
model of the NN-based estimator which models the current
sensors readings and ς collects its trainable parameters. The
notation G(ς) in (5) underlines that we aim at learning also
the graph structure of the system during the training phase.

2) Classification Block: As shown in Fig. 1, the classifica-
tion block is made of an NN-based classifier meant to work
in real-time to detect fault(s) and also identify the faulty
sensor(s). To accomplish this task, the classifier relies on
the concept of residuals, i.e., the absolute difference between
sensors reading and their associated virtual reading, namely

1[k] = |X̂[k] − X[k]|, 1[k] ∈ RN×C (6)

where the absolute operation | · | should be interpreted ele-
mentwise. We highlight that our novel SFDIA architecture
relies on a decoupled design between estimation/classification
blocks: Thus, other discrepancy measures other than (6) may
be adopted without substantial changes in the subsequent
layers.

Ideally, when the nth sensor operates in a faultless fashion
at time k, the corresponding residual (i.e., the nth row of 1[k])
is expected to be zero due to the perfect estimation. Indeed, the
nth virtual sensor is designed to satisfy x̂n[k] ≈ xn[k] in nom-
inal conditions. Yet, in practice, there is always some amount
of residual in fault-free conditions since the virtual sensors are
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imperfect estimators of real sensors. Accordingly, the proposed
classifier collects a concatenated sequence of residuals as
inputs, namely {1[k], 1[k − 1], . . .}, and based on the above
inputs, a soft decision vector d[k] = [d1[k] · · · dN [k]]

T is
provided as the output at time k. Therein, each element of
the decision output dn[k] ∈ [0, 1], n = 1, . . . , N , refers
to a pseudoprobability of the nth sensor to be faulty at the
corresponding time instant. More specifically, the considered
classifier is modeled as follows:

d[k] = hϑ (1[k], . . . ,1[k − Mc + 1]) (7)

where hϑ (·) : RN×C×Mc → RN denotes the function model
of the NN-based classifier and ϑ collects the classifier train-
able parameters. The model accepts residuals using a sliding
window mechanism with a memory of size Mc, a tunable
hyperparameter of the proposed approach.

3) Decision Process: The value of decision element dn[k]

is assumed to represent accurately the architecture confidence
in declaring the nth sensor to be faulty at time k, with
dn[k] = 0 (resp. dn[k] = 1) being the utmost confidence on
declaring the nth sensor nonfaulty (resp. faulty). Consequently,
fault detection is performed by checking if any entries of
the decision vector d[k] exceed a given threshold γ, namely
maxN

n=1 dn[k] > γ. Consistently, fault identification is based
on the set of indices I ≜ {n ∈ {1, . . . , N } : dn[k] > γ}.
Finally, the declared faulty sensors after identification are
accommodated (viz. isolated and replaced) by their associated
virtual sensors in real-time to preserve the DT functionality.
More specifically

xs[k] → x̂s[k] ∀s ∈ I (8)

where x̂s[k] denotes the sth row of X̂[k], i.e., the sth virtual
sensor. We underline that the proposed SFDIA architecture
runs in “open loop,” i.e., accommodated measurements are
not fed back into the estimation block. This is to grant
decoupled design and avoid complex transients when a fault
is detected/identified.

The following subsections describe the NNs (includ-
ing their training phase) implementing the estimation
( f ς (·), Section III-C) and the classification blocks (hϑ (·),
Section III-D), respectively.

C. NN-Based Estimation
In this work, the AGCRN layer is adopted as the stepping

stone for the design of the estimation block (and thus model
the whole set of virtual sensors) in the proposed SFDIA archi-
tecture [36]. Indeed, AGCRN addresses three strict limitations
of GCNs, via the following advancements.

1) Node-Specific Patterns: GCN-based models are designed
to effectively capture the shared spatial patterns (i.e., interde-
pendencies) among sensors within the system. Indeed, having
shared learnable-filter parameters 2 ∈ RC×F is quite useful
to reduce the number of parameters while remaining on
obtaining the prominent shared dependencies among sensors.
Except for the shared patterns, the GCN fails to apprehend
possible diversified node-specific patterns. On the contrary,
assigning trainable parameters on each node level (i.e., a tensor
2 ∈ RN×C×F with nonparametric dependence) would fit the

bill, but unfortunately, drastically increases the network size.
Hence, to reach a reasonable compromise, 2 is factorized
as 2 = Eg ⊗ W g , where: 1) Eg ∈ RN×l is a node
embedding matrix, where l ≪ N is the embedding dimension
and 2) W g ∈ Rl×C×F is a weight pool tensor.1 Similarly,
the additive learnable bias matrix B ∈ RN×F is factorized
as B = Eg Bg , where Bg ∈ Rl×F is the bias pool matrix.
Specifically, we have

Z =

(
D̃−

1
2 Ã D̃−

1
2 X

)
⊗

(
Eg ⊗ W g

)
+ Eg Bg (9)

where the entries of Z are obtained by interpreting the tensor
product ⊗ as {Z}ik =

∑
j ( D̃−(1/2) Ã D̃−(1/2)X)i j (EgW g)i jk ,

where ( D̃−(1/2) Ã D̃−(1/2)X) ∈ RN×C and (EgW g) ∈

RN×C×F .
2) Learned Adjacency Matrix: The graph convolution oper-

ation [i.e., (3)] is completely dependent on the predefined
adjacency matrix Ã (as D̃ can be readily obtained from the
former) to capture the spatial dependencies. The adjacency
matrix is usually obtained by utilizing (intuitive) notions of
similarity and/or distance functions [44], [45]. Unfortunately,
the predefined graph generated in the aforementioned fashion
is unable to contain domain knowledge of spatial dependencies
and, equally important, is not related to the considered task.
To this end, AGCRN learns the spatial dependencies by
introducing an embedding matrix Ea ∈ RN×la . Such a matrix,
together with its transpose ET

a , is used to learn directly the
matrix D̃−(1/2) Ã D̃−(1/2), collecting the (graph-based) spatial
information leveraged by a GCN layer, based on the equation

D̃−
1
2 Ã D̃−

1
2 = softmax

(
ReLU

(
Ea ET

a

))
(10)

where la is the node embedding dimension, ReLU(·) function
is used to force a nonnegative matrix and softmax(·) function
is utilized to normalize columnwise the final adaptive matrix.

3) Complex Temporal Correlations: AGCRN integrates the
(node-specific and graph-adaptive) GCN layer with the con-
cept of gated recurrent unit (GRU) [36] to capture also
the complex and long-term temporal correlations. Hence, the
AGCRN layer relies on (matrix-valued) update and reset
gates to keep track of time dependence. As a result of the
integration, the update equations for the two aforementioned
gates also include a spatial processing which accounts for
the graph structure. Such processing utilizes node-specific
patterns and a learned adjacency matrix, both depending on
same embedding matrix E to limit the complexity. Finally,
the AGCRN output at time k is represented by the matrix
H[k] ∈ RN×F , which is obtained as the weighted sum of
its previous version (H[k − 1]) and a candidate activation
matrix (Ĥ[k]). The weights are provided by the update gate,
whereas the candidate activation matrix is obtained with an
analogous spatial processing and leveraging the reset gate
outcome. Details regarding the constitutive equations of the
AGCRN layer are reported in Appendix II.

1We underline that in such case 2 is obtained as a matrix-tensor multi-
plication between Eg and W g by contracting the second dimension of the
matrix with the first dimension of the tensor according to Einstein notation,
i.e., {2}ikℓ =

∑
j {Eg}i, j {W g} j,k,ℓ.
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To achieve accurate virtual sensors, the corresponding
NN-based estimator f ς (·) is thus composed as follows.
We stack two AGCRN layers to be able to extract complex spa-
tial and temporal correlations among sensors. The output (viz.
input) of the first (resp. second) ACGRN layer is the evolution
of the state matrix H1[k − Me], . . . , H1[k]. Conversely, from
the output of the second AGCRN, we extract only the most
recent form of the state matrix, i.e., H2[k] (a usual practice
when stacking multiple recurrent layers). A 2-D convolutional
layer2 is then applied at the output of the second AGCRN layer
to directly project the representation from H2[k] ∈ RN×F

(number of sensors by number of AGCRN features) to obtain
the estimate X̂[k] ∈ RN×C (number of sensors by number of
node parameters).

The MAE loss function is utilized to train the estimator,
i.e.,

Lest (ς) =
1
w

w−1∑
j=0

∥∥∥X̂ j (ς) − X j

∥∥∥
1

(11)

where w is the number of samples in each batch, X j denotes
the fault-free readings of sensors and X̂ j (ς) refers to the
corresponding estimate. The estimation block is learned in
the so-called denoising configuration: the NN is then trained
to predict the fault-free X[k] even in the presence of faulty
sensors. Such configuration helps the model learn the latent
representation of data and make a robust recovery of the clean
original data. Finally, the adaptive moment estimation (Adam)
optimization algorithm [46] is used to optimize the above loss.

The training process of the NN-based estimation block is
summarized in the upper part of Algorithm 1 (“procedure
ESTIMATOR”).

D. NN-Based Classification
In this work, a deep feed-forward (viz. MLP) classifier was

selected to implement the mapping hϑ (·). Specifically, the
input tensor {1[k], . . . ,1[k−Mc+1]} is flattened into a single
vector with NC Mc entries. The considered MLP is made of
Hc = 2 hidden layers, each with Nc = 2N neurons, where N
denotes the number of sensors. Hyperbolic tangent activation
function [i.e., tanh(·)] is applied to each neuron in both hidden
layers. Finally, the MLP network is terminated with N neuron
outputs with sigmoid activation function [i.e., σ(·)] to provide
a pseudoprobability output within [0, 1]. The N outputs are
the entries of the soft decision vector d[k].

To train the classifier and make it able to implement both
detection and identification tasks, a loss capitalizing multitask
learning is employed. In the following, each learning task is
associated with the classification of the operating condition
for the corresponding sensor. Specifically, a weighted sum
of the losses of the N binary (fault/no-fault) detection tasks
associated with the unreliable sensors is minimized, i.e.,

Lcl

(
ϑ shared, {ϑn}

N
n=1

)
≜

N∑
n=1

λn Ln (ϑ shared, ϑn) (12)

21-D convolutional layer and linear layers were observed to perform
considerably worse than the 2-D convolutional layer.

Algorithm 1 Training Process of the Proposed SFDIA
Architecture

1: procedure INITIALIZE
2: Split train and validation sets;
3: Generate the faults and add to train and validation

sets;
4: Random initialization of weights and biases for both

networks;
5: procedure ESTIMATOR ▷ Denoising
6: Input: falsified train set;
7: Label: fault free train set;
8: while Epoch number < Max epoch OR Max validation

patience not reached do
9: for Each epoch do

10: Calculate MAE loss function;
11: Update weights and biases using Adam opti-

mization;
12: Calculate validation loss;
13: Update validation patience and epoch number;
14: procedure CLASSIFIER
15: Compute virtual sensors readings of train and valida-

tion sets using Estimator;
16: Compute residual signals of train and validation sets;
17: Input: residual signals of train set;
18: Label: the 0/1 representation of the true fault status;
19: while Epoch number < Max epoch OR Max validation

patience not reached do
20: for Each epoch do
21: Calculate BCE loss function;
22: Update weights and biases using Adam opti-

mization;
23: Calculate validation loss;
24: Update validation patience and epoch number;

where ϑ = {ϑ shared, ϑ1, . . . ϑ N }. In the above formula, the
weight λn indicates the preference level of the nth task (i.e.,
detection of a fault at nth sensor). It is worth noticing that the
multitask objective function allows the proposed classifier to
solve multiple learning tasks at once (i.e., via a single NN).
Accordingly, in the above expression, ϑ shared represents the
vector of shared parameters of the MLP common to all the N
different tasks (i.e., those corresponding to the Hc = 2 hidden
layers), whereas ϑn indicates the vector of parameters which
are task-specific for nth learning task (i.e., those corresponding
to the nth output).

In this work, uniform weighting is adopted (λn = 1/N )
and a binary cross-entropy (BCE) loss function for all the N
binary tasks L1(·), . . . ,LN (·) is used, i.e.,

LBCE
n (ϑ shared, ϑn)

= −
1
w

w−1∑
j=0

{
y j

n ln d j
n (ϑ shared, ϑn)

+ (1 − y j
n ) ln

(
1 − d j

n (ϑ shared, ϑn)
)}

(13)
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TABLE I
SUMMARY STATISTICS OF DATASETS

where y j
n is the 0/1 representation of the true (i.e., labeled)

fault status and d j
n denotes the entry of classifier output of nth

sensor. Finally, w is the number of samples in each batch.
We underline that the overall loss is minimized by leverag-

ing Nesterov-accelerated adaptive moment estimation (Nadam)
optimization algorithm [47]. The training process of the
NN-based classification block is summarized in the lower part
of Algorithm 1 (“procedure CLASSIFIER”).

IV. DATA DESCRIPTION

In this study, we use hybrid datasets, i.e., datasets made of
real-world measurements with synthetically generated faults
superimposed. We point out that injecting synthetically gen-
erated fault into datasets with real-world measurements is
a common practice in the evaluation of SFDIA systems
(e.g., [13], [23], [48]) to assess the performance via a complete
statistical analysis given the possibility of generating a large
variation of faulty conditions3 and, equally important, assess-
ing accommodation performance. Details about the hybrid
datasets used in this work are provided in the following. Also,
we recall that datasets are presented in the form of time series
which are the inputs to the considered algorithms.4

A. Measurements
As for the real-world measurements, we use two datasets,

which are publicly available and have been widely used in
previous research [50], [51]. Table I summarizes the statistics
of each dataset. Sensors in both datasets collect a single
parameter (flow rate or pressure), i.e., C = 1. Their detailed
description follows.

1) PeMSD8: This real-world dataset contains traffic data
collected in San Bernardino, CA, USA, from July to
August 2016 [37]. The traffic data consist of all detector-based
point data captured by the California Department of
Transportation (CalTrans) performance measurement system5

(PeMS). The traffic flow is collected by N = 170 sensors on
eight roads in San Bernardino with a time interval of 5 min.

2) Water Tank: This dataset6 collects measurements from
a network of N = 100 water tanks connected through
pipelines [38]. Tanks pressure is measured using pressure
sensors to indicate the level of water in the tanks. When a
tank’s water level goes below a certain threshold, tank starts to
refill until it is full. The flow rate between two connected tanks
is a nonlinear function of the pressure and distance between
the tanks. We use the first three measurements’ logs of the
dataset which roughly contains 27k samples.

3It is worth noticing that real faults are sporadic and hard to collect. Some
efforts toward the collection of real-world datasets for SFDIA are discussed
in [49] with focus on Carbon Capture and Storage.

4The considered GSP-based approaches do not require side information
related to the sensor topology, they extract the spatial information directly
from the time series.

5https://pems.dot.ca.gov/
6https://github.com/IndustrialNetwork/GraphDataset

B. Sensor Faults
As for synthetically generated sensor faults, we consider

bias, drift, and noise fault types. Bias fault represents sudden
faults, while drift fault well represents gradually appearing
faults. Finally, noise faults well represent sensors subject to
external disturbances.

1) Bias Fault: This fault type manifests as an additive
constant vector b ∈ RC inserted to the normal operation of
generic nth sensor for M consecutive samples, i.e.,

xb
n[k] =

{
xn[k] + b, 0 ≤ k − m < M
xn[k], otherwise

(14)

where m denotes the starting time instant of the fault, xn[k]

and xb
n[k] are the normalized healthy and possibly bias-faulty

readings at time step k, respectively.
2) Drift Fault: For this type of fault, an additive term drifts

gradually to the bias level vector b in M samples and then
remains at the same value for K samples (M > K ), namely

xd
n [k] =


xn[k] +

(k − m + 1)

M
b, 0 ≤ k − m < M

xn[k] + b, M ≤ k − m < M + K
xn[k], otherwise

(15)

where xd
n [k] is the possibly drift-faulty readings at time k.

3) Noise Fault: This fault type is also considered to evaluate
the performance of the proposed architecture in unseen fault
scenarios. Specifically, a zero-mean additive Gaussian noise
vector w[k] ∼ N (0C , σ 2

g IC ) is added for M consecutive
samples, i.e.,

xg
n[k] =

{
xn[k] + w[k], 0 ≤ k − m < M
xn[k], otherwise

(16)

where xg
n[k] is the possibly noise-faulty readings at time

step k and σ 2
g represents the noise variance.

In this study, we train and test our proposed architecture
under synthetically generated bias and drift fault types. Indeed,
evaluation of the proposed architecture under these two fault
types helps to highlight the proposed architecture generality
in accommodating diversified faulty conditions. Additionally,
in Section V-B, we will consider noise faults as an unseen
fault type (i.e., not used during training) to test/evaluate the
performance robustness of our proposal.

V. NUMERICAL RESULTS

In this section, we present the results of comprehensive
experiments to demonstrate the effectiveness of the proposed
SFDIA architecture. Also, the proposed architecture is com-
pared with several state-of-the-art methods.7

7We modified the configuration of some baselines for sake of fair compar-
ison (see Table II).
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TABLE II
SETUP PARAMETERS OF THE PROPOSED ARCHITECTURE AND THE OTHER BASELINES. THE MAXIMUM NUMBER OF EPOCHS AND EARLY

STOPPING PATIENCE FOR ALL ARCHITECTURE ARE SET TO 400 AND 15, RESPECTIVELY. WE RECALL THAT THE ARCHITECTURAL

SPECIFICATION OF FCC AND THE ESTIMATOR BLOCK OF M-SFDIA/OM-SFDIA REFERS TO A SINGLE VIRTUAL SENSOR

A. Experimental Setup
1) Preprocessing: We split each dataset into train, valida-

tion, and test sets with a split ratio of 60% : 20% : 20%,
respectively. We perform a data standardization before training
the networks. We normalize data to the span of [0, 1] to avoid
polarization during the training phase using a min-max scaling.

2) Baselines: We compare our SFDIA architecture against
five state-of-the-art SFDIA and anomaly detection methods.

1) AE-based architecture addressed in [23] is a two-stage
approach of a (standard) AE to learn data patterns among
sensors for fault detection, and a denoising AE (DAE)
to clean (accommodate) faulty data. The identification
task for AE architecture was not advised in the original
work. For the sake of fair comparison and to enable this
architecture to perform identification task, we changed
its decision logic. Here, we tracked the squared error
(namely eAE,s) between the respective input and output
of each sensor s. Later, this error is compared with a
predefined threshold δ, enabling the AE method to both
detect and identify the faulty sensors.8 The input of this
approach is X[k − 1], . . . , X[k − Me], arranged in a
single vector of length N · Me (i.e., different sensors at
different time steps are flattened together).

2) Fully connected cascade (FCC) NN is used in a modular
architecture to model the virtual sensors [39]. FCC NN is
chosen instead of the popular MLP NN due to efficiency
in terms of number of neurons and input size required for
the SFDIA problem. Fault detection and identification
are performed by evaluating the residual between each
sensor and the corresponding FCC NN estimate. The
input of this approach is X[k −1] (i.e., time dependence
is not exploited), arranged in a vector of length N .

3) M-SFDIA proposal is a modular architecture which is
able to detect and isolate only a single faulty sensor at a
time [9]. Nonetheless, for the sake of a fair comparison,

8Similar to our proposed method, maxN
s=1 eAE,s [n] ≷ δ is used for

detection, and for the identification, the set of identified faulty sensors is
obtained as IU ≜ {s ∈ {1, . . . , N } : eAE,s [n] > δ}. It is worth noting
that numerical results (not shown for brevity) based on the original detection
logic as [23] showed worse performance than the considered variant due to
the inability to cope with weak (and transient) faults.

we used our decision logic (see Section III-B.3) to
enable the M-SFDIA architecture to detect, isolate, and
accommodate multiple simultaneously faulty sensors.
The input of this approach is X[k − 1], . . . , X[k − Me],
arranged in a vector of length N · Me (i.e., different
sensors at different time steps are flattened together).

4) Optimized M-SFDIA (OM-SFDIA) is an optimized
class of M-SFDIA architecture which selects the best
configuration of NN modules for SFDIA among var-
ious variants [20]. OM-SFDIA is enhanced to handle
more complex spatio-temporal patterns in the data by
using GRU model as virtual estimators and a CNN
model for the classifier. The input of this approach is
X[k − 1], . . . , X[k − Me], arranged in a matrix of size
[N , Me].

5) GDN is a novel attention-based approach, which detects
anomalies from a learned graph of relationships between
sensors [35]. The GDN method was merely designed
for anomaly detection purposes. We used our deci-
sion logic (see Section III-B.3) upon the GDN graph
attention-based output to enable this method to detect
and isolate multiple simultaneously faulty sensors. The
input of this approach is X[k − 1], . . . , X[k − Me],
arranged in a matrix of size [N , Me] (i.e., similar to
our proposal).

We stress that all the aforementioned baselines (except for
FCC, which neglects time dependence in its formulation [39])
leverage the same exact input as the proposed SFDIA archi-
tecture. Furthermore, we remark that, given the modularity of
FCC, M-SFDIA, and OM-SFDIA, a dedicated NN is trained
for each virtual sensor. Accordingly, the actual input for nth
virtual sensor NN is obtained by replacing X[k − m] with
X−n[k − m] (namely the same vector after removing the
contribution from nth sensor) in these architectures while
retaining the flattening rationale described. Finally, we also
compared the proposed architecture with a SVM-based clas-
sifier [13]. Surprisingly, the SVM method entirely failed in
detecting the faults on both datasets, thus we do not report
those performance in the following.

3) Parameters Settings and Implementation Details: The
selected sliding window size for the estimator input is
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Me = 12 and for the classifier input is Mc = 6 based
on a search over the grid {3, 6, 9, 12, 15}. We also choose
some hyperparameters of the proposed architecture and other
baselines using a grid search. To avoid models overfitting,
we use early-stopping criteria to train models, i.e., we stop
the training process once the validation loss stops decreasing
for 15 consecutive epochs or maximum number of epochs
achieved. More details about setup parameters of the proposed
architecture and the baselines can be found on Table II.

We implement our architecture using Pytorch version
1.12.0 on MacBook pro M1 CPU 2.1–3.2 GHz with 16 GB
memory, GDN architecture using Pytorch Geometric
Library [52] version 2.0.4, and other baselines using Keras
Python API running on TensorFlow version 2.9.2.

4) Fault Generation: To represent weak faults, the fault level
b (note that b reduces to a scalar since C = 1) is generated as
b = (2sb − 1) · ab where sb ∼ B(1/2) and ab ∼ U(0.2, 0.4).
The variance for noise faults is similarly generated as σ 2

g ∼

U(0.2, 0.4). The fault lengths are specified via the parameters
M and K [see (14), (15) and (16)], which are assumed
uniformly distributed as M, K ∼ Ud(3, 11) to represent tran-
sient faults. The random distribution of faults helps both the
estimator and classifier to better generalize during the training
phase and prevents focusing on a specific fault level/length.
In the fault generation process, up to P = 3 concurrent
faulty sensors were considered to evaluate the robustness of the
proposed architecture against simultaneous faults in terms of
detection and identification. Finally, we consider a fault rate
(ratio between the number of faulty and nonfaulty samples
in the datasets) FR ≈ 10%. It is worth mentioning that the
parameters are selected to show the potentiality of handling
multiple faults, however, a complete analysis about the impact
of the fault ratio on the performance is beyond the scope of
the article.

B. Results and Analysis
Virtual sensors with embedding dimensions of l ∈

{1, 2, 3, 4, 5} have been trained and compared. In detail,
we utilized common metrics of MAE, RMSE, and MAPE to
measure the performance of virtual sensors in Fig. 2 for each
dataset. The dimension of the node embedding directly impacts
the learned graph property. Results highlight that the proposed
architecture maintains relatively stable performance for all the
tested embedding dimensions, which illustrates the robustness
of the proposed architecture. In general, larger embedding
dimensions would relatively improve the performance, while
excessively increasing the embedding dimension would inflate
the number of the trainable parameter and causes overfitting
which deteriorates the performance. The node embedding
dimension l = 2 is considered acceptable to balance the archi-
tecture’s performance and complexity on both datasets, thus
in the following, we will refer to this specific configuration.

Virtual sensors performance of our proposal versus other
baselines are reported in Table III for both the considered
datasets. Overall, our proposed method clearly marks the best
performance in all metrics as summarized in Table III. Under-
lined values refer to the best-performing baselines on each
metric. We can observe that both the graph-based methods,

Fig. 2. Virtual sensors performance sensitivity to different embed-
ding dimensions l in terms of MAE, RMSE, and MAPE. (a) PeMSD8.
(b) Water Tank.

TABLE III
VIRTUAL SENSORS PERFORMANCE

GDN method and our proposal, outperform other baselines
on the Water Tank dataset, which indicates the effectiveness
of GCN-based architecture in capturing spatial correlations.
Nevertheless, the proposed architecture illustrates significant
improvements (i.e., above 90% over GDN), thanks to its
recurrent design. Better virtual sensors also imply higher
accommodation performance, since these virtual measure-
ments replace the real faulty sensors measurements upon
classifier identification. There are no existing baselines that
are as stable as our proposal. For instance, AE illustrates
reasonably low MAPE on the PeMSD8 dataset, but failed
on other metrics and the other dataset. On the contrary, our
proposal shows reliable estimations in all cases.

Focusing our investigation toward detection and identifi-
cation (viz. isolation) performance, in Fig. 3, we report the
receiver operating characteristic (ROC) curves, which depicts
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Fig. 3. ROC curves on two benchmark datasets. (a) and (b) Detection performance, where the chance line is included, and the identification
performance, respectively. Curves closer to the top-left corner indicate better performance (the closer the curve to the chance line, the less accurate
the detection performance).

the probability of (a) detection and (b) identification vs. the
probability of false alarm. The probability of identification
indicates the probability that SFDIA architecture correctly
identifies the actual faulty sensor(s). Hence, the probability of
identification is upper bounded by the corresponding detec-
tion probability, given the same false-alarm rate value. The
proposed architecture significantly outperforms all the baseline
methods on both datasets, demonstrating its capability to detect
and isolate sensor faults on graph data. The main reason
behind this is that our proposal captures the faults and sensors’
patterns by jointly utilizing spatio-temporal correlations due
to its graph convolutional and recurrent design. The AE,
M-SFDIA, OM-SFDIA, and FCC methods, regardless of their
approved performance on small-size sensory networks [9],
[20], [23], [39], show relatively poor detection performance
because these methods have limited capability to discriminate
faults from high-dimensional graphs. We notice that all the
baseline methods almost failed to identify the correct faulty
sensor(s), while the proposed architecture identifies faulty
sensor(s) with bold confidence on both datasets. Moreover,
our proposal obtains more considerable performance gains on
detection and identification in the water tank dataset compared
to which in the PeMSD8 dataset. We observe that the Water
Tank dataset has a more spatial connection degree (# edges =

388 and # sensors = 100) than the PeMSD8 (# edges =

277 and # sensors = 170) dataset, which may lead to stronger
spatial correlations.

Delving into the detection and identification performance
of the proposed architecture, Fig. 4 presents the details of its
decision behavior on both datasets for a selected threshold γ.
Furthermore, we considered a single simultaneous fault in the
present analysis, namely P = 1. The reason was to investigate
the identification performance in a classification form, so as
to discriminate among (N + 1) classes, corresponding to a
fault event on each of the N sensors or no fault condition.

This assumption allows assessing whether there are relevant
miss-identification patterns (i.e., a correct fault detection event
is declared, but the latter is associated with the wrong sensor).
There are several algorithms for threshold selection, subject to
different criteria. We choose Youden index J , which selects
the threshold γ subject to maximization of the vertical distance
between the chance line and the detection probability Pd point
on the ROC curve [53], i.e.,

J = max
γ

(Pd − P f ) (17)

where P f is the probability of false alarm. Details of the
selected probabilities of detection and false alarm using the
Youden index are shown in Fig. 4(a). From inspection of
the corresponding confusion matrices, although the SFDIA
architecture miss-detects some faulty sensors, i.e., ≈ 23%
of faults in the worst case on PeMSD8 under drift fault,
it identifies the actual faulty sensor (viz. class) with excellent
precision upon detection [see Fig. 4(b)].

As a complementary analysis over unsupervised perfor-
mance of the proposed architecture, in Figs. 5 and 6,
we analyze the proposed architecture performance in situa-
tions that the architecture is not specifically trained for (i.e.,
without any supervision). In Fig. 5, we trained both NNs in
our SFDIA architecture on bias fault type, while tested its
(a) detection and (b) identification performance on unseen
drift and noise fault types. Surprisingly, both detection and
identification performance on unseen fault types are relatively
close to the performance on trained fault type. This is basically
because the proposed technique models the virtual sensors
in the denoising configuration, and this helps the estimator
to focus on sensors’ interdependencies and sensor-specific
patterns rather than focusing on fault type patterns. Moreover,
perfect virtual sensors result in interpretable residual signals
which further help the classifier to easier differ between faulty
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Fig. 4. Confusion matrices of the proposed architecture. Note that the log scale is used in (b) to evidence small probabilities. y - and x-axis numbers
in (b) refer to the corresponding sensors in each dataset. “None” label refers to no-faulty sensor class. (a) Detection. (b) Classification.

Fig. 5. Unsupervised (a) detection and (b) identification performance of
the proposed architecture over unknown fault types (i.e., drift and noise
fault) in terms of ROC curves. Both estimator and classifier are trained
over the bias fault type.

and nonfaulty residual patterns. To further investigate the pro-
posed architecture capabilities in unseen (i.e., unsupervised)
scenarios, Fig. 6 shows the results related to training the
SFDIA architecture on weekdays and testing it on weekends
for the PeMSD8 dataset. Fig. 6(a) visualizes how the patterns
differ on weekdays compared to those on the weekends. It is
apparent that three randomly chosen sensors record lower
traffic flows on the corresponding streets during weekends
and slightly shifted rush (peak) hours with respect to the

Fig. 6. (a) Traffic flow over three zones (i.e., captured by three sensors)
over two weeks starting from the 11th of July, 2016 on the PeMSD8
dataset. (b) Detection and identification performance of the proposed
architecture trained over bias fault on weekdays of the PeMSD8 dataset
and tested on weekends in terms of ROC curves. Black dash lines in
(a) highlight the weekends.

patterns on weekdays. Although, despite obvious changes in
the patterns between weekdays and weekends, the proposed
architecture exhibits stable detection and identification perfor-
mance in comparison to the case that the proposed architecture
trained on both weekdays and weekends. Again, this is due to
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Fig. 7. Output at different stages of the proposed SFDIA architecture on five selected sensors (no. 7, 22, 28, 37, and 106) of PeMSD8 dataset with
bias faults (Pf = 10−2) for approximately two days of the test set.

TABLE IV
NUMBER OF NNS’ TRAINABLE PARAMETERS

capability of the proposed architecture to learn fine-grained
general spatio-temporal inter-dependencies between sensors.

To visually assess the accommodation capabilities of our
proposal, Fig. 7 shows the output of the proposed SFDIA
architecture for almost two days of the test set. More specif-
ically, the bottom plot of the figure monitors the faults on
five selected sensors on the PeMSD8 dataset in the case
of bias faults. The proposed architecture successfully detects
and identifies all faults in the corresponding sensors with
virtually no delay in the system. Results indeed highlight
only two miss detected points (i.e., false negatives) at samples
58 and 134 on the sensors 22 and 28, respectively. As evident
from the top plot of Fig. 7, after fault identification, the
proposed architecture accommodates isolated faulty data with
their estimates from virtual sensors to ensure the fault-free
performance of the system. In this snapshot, we have two
overlapped (i.e., simultaneous) faulty sensor incidents for the
samples ∈ (100, 150). Nonetheless, the proposed architecture
manages to handle this scenario and successfully identifies and
accommodates the faulty samples.

Finally, to investigate the training complexity of the pro-
posed architecture, in Table IV, we report the number of
trainable parameters of our proposal in comparison to the
baselines. Results highlight the intermediate complexity of
the proposed architecture. Although the proposed architecture
has much more trainable parameters in comparison to the

TABLE V
TRAINING AND INFERENCE TIME FOR DIFFERENT BASELINES. THE

TRAINING TIME (MINUTES) IS FOR THE OVERALL TRAINING

PHASE, WHILE THE INFERENCE TIME (MILLISECONDS)
IS PER INPUT SAMPLE

GDN method, our architecture is capable to perform all
three tasks of the SFDIA framework. Interestingly, the AE
deep network and M-SFDIA methods have a considerably
high number of trainable parameters, thus their instability in
detecting faults to some extent. It also reveals the exponential
complexity increment of the deep learning solutions over
large-size networked IoT systems. The training complexity of
the proposed architecture is balanced with respect to its perfect
SFDIA capabilities. Table V presents a comparative analysis
of the speed metrics across different baselines in terms of
both training and inference times. Training time is the time
taken by a model to train on a dataset, and the inference time
denotes the time taken for the forward propagation of a single
sample. Notably, our proposed architecture exhibits a relatively
extended training time when contrasted with the baseline mod-
els, which can be attributed to its recurrent design. However,
it is important to underscore that the longer training time
does not pose a significant impediment in practical scenarios
(training can happen on powerful cloud-based servers, which
effectively mitigates the impact of this temporal aspect).
Conversely, inference time assumes greater importance as it
reflects the amount of time it takes for a model to process
new data and make a prediction/decision. As evident from
Table V, the proposed architecture demonstrates an inference
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time of approximately 10 ms to process the input sample on
the given hardware, which underline its suitability for real-time
processing and decision-making tasks.

VI. CONCLUSION AND FUTURE WORK

We tackled the SFDIA problem of large-size networked IoT
systems via a deep learning approach. Our work represents
an opening gate toward transferring reliable data into DTs
of large-size sensor systems/networks. In this article, we pro-
posed a two-block architecture for SFDIA framework. In the
first block, an estimator models virtual sensors (by capitalizing
both spatial and temporal dependence via graph-convolutional
recurrent layers) and provides replacements for the identi-
fied faulty sensors within the system. In the second block,
a lightweight (MLP-based) classifier detects and identifies
the faulty sensors based on residuals. We provided a wide
numerical analysis for comprehensive evaluation and compar-
ison of the proposed architecture with other state-of-the-art
methods, and also pointed out the unexplored groundwork for
SFDIA advances on the large-scale networked IoT systems.
The numerical analysis of the proposed SFDIA architecture
highlighted performance gains ranging approximately from
30% to 90% (in terms of MAE, RMSE, and MAPE) in the
case of virtual sensor design over the state of art. Equally
important, results concerning detection and identification rates
highlighted improvements larger than 40% (for a P f = 10−1)
over existing SFDIA architectures for both the datasets when
both the fault types considered were superimposed. It is worth
highlighting that the denoising design and the classification
upon the residuals empower the proposed architecture to main-
tain its performance under unseen fault types. Accordingly,
our proposal attained larger than 80% detection (resp. 70%
identification) probability for a P f = 10−1 in the case of
(unseen) drift and noise faults on the Water Tank dataset.

Future work will focus on two main aspects: 1) includ-
ing dynamic risk analysis in the design of IIoT systems in
order to meet safety requirements when deploying DTs for
safety-critical applications and 2) investigating nonstationary
scenarios and the impact of diversity and redundancy in the
graph.

APPENDIX I
SPECTRAL CONVOLUTION IN GCN LAYERS

This appendix provides the details of how the spectral
convolution of (1) in GCNs can be approximated as a linear
processing of the input via a matrix which encodes the graph
structure. This is accomplished by considering a Chebyshev
polynomial approximation for the spectral graph convolution
and then truncating this series to the first order.

A. Chebyshev Polynomial Approximation
First, to tackle the localization problem, ĝθ (3) can be

approximated by a truncated expansion up to order K of
Chebyshev polynomials [54] {Tk(x)}K

k=0, namely ĝθ ′(3) ≈∑K
k=0 θ ′

k T k(3̃). In the latter approximation, 3̃ denotes the
rescaled matrix 3̃ ≜ (23/λmax − I N ) (where λmax denotes
the largest eigenvalue of LG), while θ ′

k represents the kth

Chebyshev coefficient (θ ′
∈ RK+1). The Chebyshev polyno-

mials can be efficiently computed via the recurrence relation
Tk(x) = 2xTk−1(x)− Tk−2(x) with T0(x) = 1 and T1(x) = x .
Although the graph filter is now K -localized with respect
to the K th-order polynomials of the Laplacian, the learning
complexity is still not addressed because of the multiplication
of the eigenvector matrix U . A solution to this problem is
to directly learn the function of the normalized Laplacian
gθ ′(LG) [42]. Indeed, exploiting (U3U T )k

= U3kU T ,
the equality UT k(3̃)U T

= T k(L̃) holds, where L̃ ≜
(2LG/λmax − I N ). Accordingly, graph convolution can be
approximated as

gθ ′ ∗ x ≈

K∑
k=0

θ ′

k

[
U T k(3̃)U T

]
x =

K∑
k=0

θ ′

k T k(L̃) x (18)

where T k(L̃) ∈ RN×N is the K th-order Chebyshev polyno-
mial. The filtering operation is reduced to O(K |E |) operations.

B. Linear Formulation of GCN
With first-order approximation (one-hop localization, i.e.,

K = 1) of (18) and further assuming9 λmax ≈ 2 and θ =

θ ′

0 = −θ ′

1, a layer-wise linear convolution operation can be
defined to create a graph-based CNN model, i.e.,

gθ ∗ x = θ
(

I N + D−
1
2 AD−

1
2

)
x → θ

(
D̃−

1
2 Ã D̃−

1
2

)
x

(19)

with Ã ≜ A + I N and d̃i i ≜
∑

j ãi j . The last expression
means that the matrix operation has been replaced with the
so-called re-normalization trick [55].

APPENDIX II
DETAILED STRUCTURE OF AGCRN LAYER

This appendix explains how the typical structure of a GRU
unit is integrated with the spatial processing of GCN layers
(exploiting 1) node-specific patterns and 2) a learned adjacency
matrix). Such integration defines the AGCRN layer. More
specifically, the AGCRN layer is formally defined as

Â = softmax(ReLU(E ET ))

Z[k] = σ
(

Â[X[k]; H[k − 1]] ⊗ (E ⊗ W z) + E Bz

)
R[k] = σ

(
Â[X[k]; H[k − 1]] ⊗ (E ⊗ W r ) + E Br

)
Ĥ[k] = tanh

(
Â[X[k]; R[k] ⊙ H[k − 1]]

⊗
(
E ⊗ W ĥ

)
+ E Bĥ

)
H[k] = Z[k] ⊙ H[k − 1] + (1N×F − Z[k]) ⊙ Ĥ[k] (20)

where E ∈ RN×l , W z ∈ Rl×(C+F)×F , W r ∈ Rl×(C+F)×F ,
W ĥ ∈ Rl×(C+F)×F , Bz ∈ Rl×F , Br ∈ Rl×F and Bĥ ∈ Rl×F

are the trainable parameters of the AGCRN.
In the GRU-inspired layer of (20), the matrices

Z[·] ∈ RN×F , R[·] ∈ RN×F , and Ĥ[·] ∈ RN×F represent the

9These assumptions are made to constrain the number of trainable param-
eters (viz. reduce number of operations) and to address overfitting. Change
in scale can be adapted by NN in the training phase.
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update gate, the reset gate, and candidate activation matrix,
respectively. It is worth noticing that in the above equations,
the tensor products E ⊗ W z , E ⊗ W r , and
E ⊗ W ĥ have analogous meaning as Eg ⊗ W g
in (9). The same reasoning applies for the products
Â[X[k]; H[k−1]]⊗(E⊗W z), Â[X[k]; H[k−1]]⊗(E⊗W r )

and Â[X[k]; R[k] ⊙ H[k − 1]] ⊗ (E ⊗ W ĥ) when compared
with ( D̃−(1/2) Ã D̃−(1/2)X) ⊗ (Eg ⊗ W g) in the same (9).
The functions σ(·) and tanh(·) are the (entry-wise) sigmoid
and hyperbolic tangent activations, respectively. Furthermore,
the matrix Â ∈ RN×N is the (estimated) pseudo-Laplacian
of graph G. In order to reduce the number of learning
parameters, AGCRN unifies the embedding matrices
associated with node-specific patterns and (adaptive) graph
structure (i.e., Eg and Ea) into a single embedding matrix E.

Finally, the AGCRN output at time k is represented by the
matrix H[k] ∈ RN×F , which is obtained as the weighted sum
of its previous version (H[k −1]) and the candidate activation
matrix (Ĥ[k]). The weights are provided by the update gate
at the same time step (Z[k]), whereas the candidate activation
matrix is obtained with an analogous spatial processing and
leveraging the reset gate outcome at the same time (R[k]).
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